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Abstract
G protein-coupled receptors (GPCRs) are the largest family of transmembrane proteins that relay extracellular signals across 
the plasma membrane and elicit an intricate cascade of cellular signaling events. A significantly large fraction of available 
drugs target GPCRs in order to exert fine control over functional outcomes from these receptors in pathological conditions. In 
this context, endocytosis and intracellular trafficking of GPCRs stringently regulate signaling outcomes from GPCRs within 
physiologically relevant spatiotemporal regimes. The membrane microenvironment around GPCRs has recently emerged 
as a key player in receptor function. Cholesterol is the single most abundant lipid in the eukaryotic plasma membrane and 
plays a central role in membrane organization and dynamics, with far-reaching functional implications in cellular physiol-
ogy. In this review, we discuss current excitements in GPCR endocytosis and trafficking, with an emphasis on the role of 
membrane cholesterol. We envision that a detailed understanding of the contribution of membrane lipids such as cholesterol 
in spatiotemporal regulation of GPCR signaling would enable the development of therapeutic interventions fine-tuned to 
receptors residing in specific membrane microenvironments.
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GPCRs: stringently regulated signaling 
nanomachines in a lipid microenvironment

G protein-coupled receptors (GPCRs) are membrane-
resident signal transducers that enable the recognition of 
chemically and physiologically diverse extracellular cues 
essential for a repertoire of cellular functions (Chattopad-
hyay 2014; Pierce et al. 2002; Rosenbaum et al. 2009; Weis 
and Kobilka 2018). Signaling by GPCRs has been impli-
cated in diverse cellular physiology, ranging from growth 
and development, to immune responses and pathogen uptake 
(Gutierrez and McDonald 2018; Hameid et al. 2021; Läm-
mermann and Kastenmüller 2019; Palczewski and Orban 
2013). It is therefore not surprising that GPCRs account for 
more than one-third of the current drug targets (Chan et al. 
2019; Hauser et al. 2017; Sriram and Insel 2018). However, 

these receptors constitute only ~ 10% of GPCRs encoded in 
the human genome, leaving a major fraction of druggable 
targets untapped (Cooke et al. 2015; Jacobson 2015; Stockert 
and Devi 2015). In addition, the GPCRs that are targeted by 
currently available drugs are primarily aminergic and opioid 
receptors (Hauser et al. 2017). These statistics suggest that 
GPCRs offer a largely unexplored, yet potentially rewarding 
pool of drug targets (Foster et al. 2019; Huang et al. 2017; 
Sloop et al. 2018).

Owing to the diverse array of intracellular signaling pro-
cesses elicited by GPCRs, regulation of their activity within 
physiological regimes and/or toward specific downstream 
responses assumes relevance. Such regulatory features 
could intervene at various stages of signal transduction via 
GPCRs—from exposure to ligands to coupling of effector 
proteins to receptors (Gurevich and Gurevich 2019; Lane 
et al. 2013; Magalhaes et al. 2012; Morris and Malbon 
1999). Apart from their role in modulating the extent of 
signaling (desensitization and resensitization), regulatory 
features of GPCR signaling also contribute to spatiotempo-
ral control over downstream effects emanating from these 
receptors (Eichel and von Zastrow 2018; Ferguson 2001; 
Weinberg and Puthenveedu 2019).
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As a direct consequence of their seven transmembrane 
domain architecture, GPCRs are predisposed to consider-
able interaction with their membrane lipid microenviron-
ment (Chattopadhyay 2014; Oates and Watts 2011; Sengupta 
et al. 2018). Several examples of these interactions have 
been captured in GPCR structures displaying lipids bound 
to the receptors (Jafurulla et al. 2019; Sarkar and Chatto-
padhyay 2021a, b; Sejdiu and Tieleman 2020). Importantly, 
such interactions have been found to be correlated with 
lipid-sensitive functional readouts in case of several GPCRs 
(Jafurulla et al. 2019; Sarkar and Chattopadhyay 2021b). 
Although the molecular underpinnings of signal transduc-
tion by GPCRs have been a subject of intense exploration, 
our understanding of the mechanistic details underlying 
lipid-mediated modulation of GPCR function is relatively 
nascent (Kumar et al. 2021). In this review, we highlight the 
role of the membrane microenvironment in GPCR endocy-
tosis, an important regulatory feature of receptor function, 
with an emphasis on membrane cholesterol as a modulator 
of GPCR endocytosis. Using our work on the  serotonin1A 
receptor as an example, we allude to the relevance of the 
interplay between cholesterol and GPCR endocytosis and 
its implications in pathophysiology and development of fine-
tuned therapeutic interventions.

Endocytosis of GPCRs: desensitization 
and beyond

Endocytosis is a major regulatory mechanism employed by 
GPCRs to sustain their downstream signaling within physi-
ological levels under a stringent spatiotemporal regime 
(Ferguson 2001; Hanyaloglu and von Zastrow 2008; Kun-
selman et al. 2021b). Endocytosis offers an effective means 
to decouple a GPCR from its pool of extracellular ligands 
by sequestering the receptor into intracellular locations. The 
first observation on internalization of GPCRs dates back to 
the late 1970s when ligand-induced desensitization of the 
β-adrenergic receptor was correlated to internalization of a 
fraction of the plasma membrane–associated receptor pool 
in frog erythrocytes (Chuang and Costa 1979). Subsequent 
work led to the identification of regulatory proteins such as 
G protein-coupled receptor kinases (GRKs) and arrestins 
that predispose GPCRs to endocytosis as a means of desen-
sitization (Benovic et al. 1987; Ferguson et al. 1996; Lohse 
et al. 1990). It was further discovered that β-arrestin could 
act as an adaptor for the assembly of clathrin coats for endo-
cytosis of the β2-adrenergic receptor (Goodman et al. 1996). 
The advent of molecular biology and the ability to express 
fluorescently tagged receptors led to the discovery that 
phosphorylation of key residues in the intracellular loops of 
the receptor acts as ‘barcodes’ (identifiers) for the recruit-
ment of endocytic machinery for GPCR internalization and 

trafficking (Bahouth and Nooh 2017; Liggett 2011; Yang 
et al. 2017).

Although GPCR endocytosis was initially identified as a 
mode of ligand-induced desensitization of receptor-medi-
ated signaling, several other regulatory features associated 
with their internalization and trafficking have emerged more 
recently (see Fig. 1). One of the earliest evidence of the role 
of GPCR endocytosis beyond desensitization implicated 
β-arrestin–mediated internalization of the β2-adrenergic 
receptor as a prerequisite for the activation of MAP kinase 
signaling (Daaka et al. 1998; Luttrell et al. 1999). A fas-
cinating feature of GPCR endocytosis that has emerged 
through research over the recent past is the ability of these 
receptors to signal from intracellular compartments (Crilly 
and Puthenveedu 2021; Irannejad and von Zastrow, 2014; 
Jong et al. 2018; Sposini and Hanyaloglu 2017). For exam-
ple, signaling responses from internalized GPCRs have 
been reported for the thyroid-stimulating hormone receptor 
(Calebiro et al. 2009), sphingosine-1-phosphate receptor 
(Mullershausen et al. 2009), parathyroid hormone recep-
tor (Ferrandon et al. 2009), vasopressin receptor type 2 
(Feinstein et al. 2013), and leutinizing hormone receptor 
(Lyga et al. 2016). More importantly, direct evidences from 

Fig. 1  Regulation of GPCR signaling by endocytosis. A schematic 
representation depicting various regulatory features associated with 
GPCR endocytosis. Endocytosis allows regulation of GPCR signal-
ing by spatially decoupling the binding of an extracellular ligand to 
the receptor (desensitization). In general, upon endocytosis, GPCRs 
could either recycle back to the plasma membrane or undergo lyso-
somal degradation within the cell. Such movements are regulated by 
intricately coordinated intracellular trafficking pathways within cells. 
Several other regulatory features associated with GPCR internaliza-
tion and intracellular trafficking have emerged recently. Endocytosis 
and intracellular trafficking of GPCRs are known to confer spatiotem-
poral control to receptor-mediated signaling, which is manifested as 
distinct signals emerging from the plasma membrane and endosomes 
in case of several receptors
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conformation-specific nanobodies that recognize specific 
activated receptor states have revealed signaling-competent 
conformations for internalized receptors with distinct cel-
lular signaling consequences (Irannejad et al. 2013, 2017; 
Kunselman et al. 2021a; Stoeber et al. 2018; Tsvetanova and 
von Zastrow 2014).

Endocytosis of membrane receptors is a highly com-
plex and stringently regulated phenomenon that involves a 
wide variety of membrane-associated and cytoplasmic pro-
tein machinery that orchestrate the process in a concerted 
fashion. In this context, several mechanisms facilitating the 
internalization of membrane receptors have been studied 
(Doherty and McMahon 2009; Kunselman et al. 2021b). 
Although a majority of GPCRs have been shown to utilize 
clathrin-mediated endocytic machinery for internalization 
(Hanyaloglu and von Zastrow 2008; Wolfe and Trejo 2007), 
caveolar localization (Bhatnagar et al. 2004; Ostrom and 
Insel 2004) and caveolin-mediated internalization (Cho 
et al. 2012; Janoshazi et al. 2007) of GPCRs have also been 
reported. In addition, multiple possibilities exist in terms 
of intracellular trafficking routes available for GPCRs upon 
internalization. Broadly, receptors could either recycle 
back to the plasma membrane, or they could be sorted to 
the lysosomal system for degradation (Fig. 1; Hanyaloglu 
and von Zastrow 2008; Kunselman et al. 2021b; Marchese 
et al. 2008).

Although much has been explored in terms of the func-
tional consequences of GPCR endocytosis, our mechanistic 
understanding of this process primarily comprises insights 
into the protein machinery that orchestrate the GPCR endo-
cytic framework, and details about the role of membrane 
lipids in this process are rather limited. This is in spite of the 
fact that GPCRs are polytopic membrane proteins and the 
polypeptide chain of the receptor crosses the membrane sev-
eral times. The following sections highlight the importance 
of cholesterol in various facets of GPCR function. Using 
examples from the limited body of literature and recent work 
from our group, we make a case for exploring the role of 
membrane lipids (particularly cholesterol) in the endocytosis 
and trafficking of GPCRs.

Cholesterol and GPCRs: an intimate 
association

Cholesterol is an essential lipid in higher eukaryotic cell 
membranes that assumes a unique functional role in cel-
lular physiology. It is the single most abundant lipid in the 
eukaryotic plasma membrane accounting for ~ 30–50% of 
the total lipid content (Maxfield and van Meer 2010; Mour-
itsen 2005). Cholesterol assumes a critical role in regulating 
membrane organization and dynamics, and associated cel-
lular functions such as signaling, sorting, trafficking, and 

pathogen entry (Kumar and Chattopadhyay 2016; Kumar 
et al. 2016; Lippincott-Schwartz and Phair 2010; Mourit-
sen and Zuckermann, 2004; Simons and Ikonen 2000). The 
unique physicochemical properties of cholesterol that have 
been fine-tuned over long time scales of evolution are mani-
fested in terms of its nonrandom distribution in the plasma 
membrane and the ability to interact with membrane lipids 
and proteins. From a structural standpoint, cholesterol com-
prises a polar 3β-hydroxyl group, a tetracyclic-fused steroid 
ring, and a flexible isooctyl chain (see Fig. 2). Each of these 
features has been suggested to confer distinct interaction 
profiles to the molecular structure of cholesterol (Chaud-
huri and Chattopadhyay 2011; Fantini and Barrantes 2013; 
Fantini et al. 2019; Paila and Chattopadhyay 2010; Sarkar 
and Chattopadhyay 2020). The 3β-hydroxyl group allows 
cholesterol to orient and anchor in the membrane (Villalaín 
1996), and facilitates electrostatic interaction with polar 
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Fig. 2  Multifaceted regulation of GPCR function by cholesterol. The 
interplay between GPCRs and cholesterol in the membrane milieu 
has emerged as a major thrust area with far-reaching implications in 
the pathophysiology mediated by GPCRs. The unique physicochemi-
cal properties of cholesterol (encoded in its chemical structure com-
prising of a polar 3β-OH group, a rigid tetracyclic ring and a flex-
ible isooctyl chain) coupled with its relative abundance in the plasma 
membrane contribute to the crucial modulatory effects of cholesterol 
on GPCRs. Extensive work using biochemical, biophysical, and 
computational approaches has shown that cholesterol affects various 
features of GPCRs such as ligand binding, G-protein coupling, down-
stream signaling, dynamics, and oligomerization

1009Biophysical Reviews (2021) 13:1007–1017



1 3

residues such as lysine and arginine of membrane proteins. 
The methyl groups in the α-face of cholesterol have been 
proposed to exhibit CH-π stacking interactions with aro-
matic amino acids such as tyrosine and phenylalanine, and 
the isooctyl chain is believed to intercalate with the side 
chains of branched amino acids such as valine, leucine, and 
isoleucine via van der Waals interactions. In addition, cho-
lesterol is a key modulator of membrane physical properties 
such as fluidity, viscosity, curvature, thickness, and dipole 
potential, which constitute important features of the mem-
brane microenvironment that influence membrane function 
(Arora et al. 2004; Bacia et al. 2005; Chen and Rand 1997; 
Haldar et al. 2012; Nezil and Bloom 1992; Pal et al. 2016; 
Simon et al. 1982).

The interplay between membrane cholesterol and GPCRs 
has emerged as a major theme in GPCR biology. The inter-
action of cholesterol with GPCRs is multifaceted, and has 
been shown to be implicated in ligand binding, G-protein 
coupling, signaling, lateral dynamics, and oligomeriza-
tion of receptors (see Fig. 2; Chattopadhyay 2014; Gimpl 
2016; Jafurulla and Chattopadhyay 2013; Jafurulla et al. 
2019; Oates and Watts 2011; Pucadyil and Chattopadhyay 
2006; Paila and Chattopadhyay 2010; Sengupta and Chat-
topadhyay 2015; Sengupta et al. 2017, 2018). A careful 
dissection of the literature on GPCR-cholesterol interac-
tion suggests that the mechanism underlying the cholesterol 
sensitivity observed by GPCRs is most likely a combina-
tion of the direct interaction of cholesterol with GPCRs and 
its modulatory effects on the membrane microenvironment 
that houses these receptors (Jafurulla et al. 2019). GPCR 
structures with cholesterol bound to receptors could suggest 
direct interaction of cholesterol with GPCRs, although there 
are some caveats (see Sarkar and Chattopadhyay 2021a, b). 
In fact, analysis of several GPCR sequences and structures 
has revealed specific sites for these interactions which have 
been proposed as cholesterol interaction motifs such as the 
cholesterol recognition/interaction consensus (CRAC), 
inverse-CRAC (CARC) and cholesterol consensus motifs 
(CCM) (recently reviewed in Sarkar and Chattopadhyay 
2020). Very recent work from our group has shown that a 
lysine residue in a CRAC motif in transmembrane helix 2 
of the  serotonin1A receptor acts as a molecular sensor for 
changes in membrane cholesterol levels and imparts choles-
terol sensitivity to cAMP signaling by the receptor (Kumar 
et al. 2021). Although the interaction of cholesterol with 
GPCRs has been shown to be weak and transient (~ μs time 
scale), such interactions appear to act as functional switches 
between receptor conformations (Sengupta and Chattopad-
hyay 2015). On the other hand, the effects of cholesterol on 
membrane physicochemical properties (such as membrane 
fluidity, viscosity, hydrophobic mismatch and membrane 
dipole potential) could modulate receptor conformation(s) 
facilitating specific functional states.

Cholesterol in endocytosis: why do we care 
and what do we know?

The motivation behind exploring the role of membrane 
cholesterol in endocytosis stems from the ability of cho-
lesterol to modulate membrane physical properties and 
participate in functional interactions with membrane pro-
tein cargo as well as the cellular endocytic machinery. 
The process of endocytosis involves several remodeling 
events at the plasma membrane that include generation of 
membrane curvature, recognition of cargo and transloca-
tion of cargo into endocytic structures on the membrane. 
In this context, cholesterol has been shown to impart nega-
tive curvature in membranes (Chen and Rand 1997) and 
accumulate in highly curved regions of bilayers (Wang 
et al. 2007). The scaffolding protein caveolin-1, involved 
in caveolin-mediated endocytosis, segregates into choles-
terol-rich domains in the membrane (Örtegren et al. 2004; 
Smart and Anderson 2002). Notably, caveolin-1 contains 
a stretch of amino acids constituting the CRAC motif 
(Epand et al. 2005), and a peptide fragment from caveo-
lin-1 containing this motif has been shown to drive the 
formation of cholesterol-rich domains (Epand et al 2003). 
In addition, it was recently demonstrated that caveolin-1 
can induce higher membrane curvature in cholesterol-rich 
membranes (Krishna and Sengupta 2019).

One of the earliest studies probing the role of mem-
brane cholesterol on “cellular uptake” reported that meta-
bolic inhibition of cholesterol biosynthesis in mouse fibro-
blasts using oxygenated derivatives of cholesterol such as 
25-hydroxycholesterol and 7-ketocholesterol resulted in 
reduced internalization of the soluble enzyme horserad-
ish peroxidase (Heinger et al. 1976). Initial insights into 
the role of cholesterol in the endocytosis of a membrane 
protein came from studies on transferrin, which demon-
strated that acute cholesterol depletion using methyl-β-
cyclodextrin (MβCD) significantly reduced the rate of 
transferrin receptor internalization without affecting recy-
cling. Ultrastructural studies using electron microscopy 
showed that this was accompanied by accumulation of flat 
clathrin-coated membranes and decrease in deep-coated 
pits (Subtil et al. 1999). In another report published around 
the same time, MβCD was shown to strongly inhibit the 
endocytosis of transferrin and epidermal growth fac-
tor, but not of the general membrane marker, ricin. This 
effect could be reversed upon replenishment of cholesterol 
(Rodal et al. 1999). Contrary to this, depletion of choles-
terol using MβCD was reported to enhance the rate of 
internalization of nicotinic acetylcholine receptors (Bor-
roni et al. 2007) via a pathway involving the small GTPase 
Arf6 (Borroni and Barrantes 2011). Metabolic depletion 
of cholesterol using mevalonin, an inhibitor of cholesterol 
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biosynthesis, resulted in reduction in nicotinic acetylcho-
line receptors in the plasma membrane which accumulated 
in the intracellular trans-Golgi network (Pediconi et al. 
2004).

Cholesterol in GPCR endocytosis: 
an evolving story

Depletion of membrane cholesterol has been shown to 
inhibit agonist-induced internalization of GPCRs such as 
the lysophosphatidic acid receptor 1  (LPA1; Urs et al. 2005), 
the δ-opioid receptor (Brejchova et al. 2016), and the for-
myl peptide receptor 1 (Wang et al. 2019). However, cho-
lesterol depletion did not affect the agonist-induced endo-
cytosis of the  M1 muscarinic acetylcholine receptor (Urs 
et al. 2005) and the cholecystokinin receptor (Harikumar 
et al. 2005). In case of  LPA1, cholesterol was shown to be 
essential for the interaction of the receptor with β-arrestin 
leading to its internalization via clathrin-mediated endo-
cytosis. On the other hand, the β2-adrenergic receptor did 
not exhibit cholesterol dependence in its interaction with 
β-arrestin (Urs et al. 2005). Constitutive endocytosis and 
recycling are characteristic features of the melanocortin-4 
receptor. Cholesterol depletion from immortalized neuronal 
cells exogenously expressing these receptors inhibited the 
constitutive endocytosis of the receptor, resulting in a loss 
of agonist-induced cAMP generation over time (McDan-
iel et al. 2012). Such differences in cholesterol-dependent 
receptor-effector interactions could arise due to partitioning 
of GPCRs and their endocytic effectors (β-arrestins) into 
distinct membrane microdomains, and the dynamics of these 
molecules under various states of receptor activation. For 
example, although both β1- and the β2-adrenergic receptors 
associate with caveolae under basal conditions, β2- (but not 
β1)-adrenergic receptors were shown to dissociate from these 
regions upon agonist stimulation (Rybin et al. 2000). The 
molecular mechanism underlying the interaction of specific 
GPCRs with the associated endocytic machinery in mem-
brane microdomains with varying cholesterol content is still 
an important unanswered question.

Extensive work from our group has demonstrated the 
prominent role of membrane cholesterol in the organiza-
tion, function, and dynamics of the  serotonin1A receptor 
(Chakraborty et al. 2018; Ganguly and Chattopadhyay 2010; 
Ganguly et al. 2011; Jafurulla et al. 2014; Paila et al. 2011; 
Prasanna et al. 2016; Pucadyil and Chattopadhyay 2004, 
2007; Sarkar et al. 2020; Shrivastava et al. 2010; Saxena 
and Chattopadhyay 2012). We recently explored the role of 
cholesterol in the endocytosis and intracellular trafficking 
of the  serotonin1A receptor using acute and chronic methods 
of cholesterol depletion (Fig. 3). We observed that under 
normal conditions, the  serotonin1A receptor undergoes 

agonist-induced clathrin-mediated endocytosis and traffics 
along the endosomal recycling pathway back to the plasma 
membrane (Kumar et al. 2019). Acute cholesterol depletion 
using MβCD resulted in a concentration-dependent inhibi-
tion of receptor endocytosis, which could be restored by 
replenishment of cholesterol (Kumar and Chattopadhyay 
2021). Notably, under mild acute cholesterol depletion con-
ditions achieved using a lower concentration of MβCD, the 
 serotonin1A receptor continued to internalize via clathrin-
mediated endocytosis, but exhibited a switch in its intracel-
lular trafficking itinerary from recycling to lysosomal deg-
radation (Kumar and Chattopadhyay 2021). Interestingly, 
when a similar extent of cholesterol was depleted using a 
chronic approach by treating cells with statin (an inhibitor 
of the rate limiting step in cellular cholesterol biosynthesis 
(Istvan and Deisenhofer 2001; Nes 2011)), the  serotonin1A 
receptor exhibited a switch in the mechanism of internaliza-
tion from clathrin- to caveolin-mediated endocytosis, along 
with re-routing of intracellular traffic to lysosomes instead 
of the plasma membrane (Kumar and Chattopadhyay 2020). 
A similar effect was previously reported for the endothelin 
receptor type A where oxidation of cholesterol using cho-
lesterol oxidase resulted in a switch in the mechanism of 
receptor internalization from caveolin- to clathrin-mediated 
endocytosis (Okamoto et al. 2000). The differential effects 
of acute and chronic methods of cholesterol depletion on 
 serotonin1A receptor endocytosis point toward the relevance 
of the actual method used to deplete cholesterol, and not 
just the extent of cholesterol depletion. The fundamental 
differences in these methods could arise due to their varied 
effects on intracellular distribution of cholesterol (and other 
lipids), physical properties of membranes along intracellu-
lar trafficking pathways, function of the protein machinery 
involved in cargo sorting and trafficking, and other pleio-
tropic effects of such treatments, all of which constitute 
essential factors contributing to endocytosis and trafficking 
in cells (Breusegem et al. 2005; Goodwin et al. 2005; Hilge-
mann et al. 2020; Liao and Laufs 2005; Sahu et al. 2019; 
Sarkar et al. 2017; Shvartsman et al. 2006).

Cholesterol in GPCR endocytosis: 
implications in pathophysiology 
and therapeutics

Impaired trafficking of GPCRs has been shown to be associ-
ated with pathophysiological conditions such as nephrogenic 
diabetes insipidus (Bernier et al. 2004), retinitis pigmentosa 
(Hollingsworth and Gross 2012), and cancer (Dorsam and 
Gutkind 2007). Furthermore, dysfunctional GPCR traffick-
ing could be mapped to defects associated with intracel-
lular trafficking machinery and sorting proteins in disease 
conditions (Chandra et al. 2021; Wang et al. 2013). Where 
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does cholesterol feature in this scenario? As discussed in the 
previous section, changes in membrane cholesterol levels 
appear to modulate endocytic and intracellular trafficking 
pathways for some GPCRs. Notably, membrane cholesterol 
levels and its biosynthetic pathway exhibit differences across 
cell and tissue types, and vary with age and development 
(Dietschy and Turley 2004; Karnell et al. 2005; Mitsche 
et al. 2015). At subcellular scales, cholesterol content var-
ies across membranes of intracellular organelles (Ikonen 
2008), and this distribution exhibits dynamic regulation 
(Mesmin and Maxfield 2009). In addition, defective cho-
lesterol biosynthesis and metabolism are hallmarks of sev-
eral pathophysiological conditions (Meng et al. 2020; Platt 
et al. 2014). These aspects raise the interesting possibility of 
cholesterol-dependent regulation in trafficking of receptors 

with consequences in their role in cellular physiology. As 
an example, recent work from our group has shown that 
the  serotonin1A receptor exhibits late endosomal/lysoso-
mal accumulation accompanied by reduction in the plasma 
membrane receptor pool in a cellular model of Smith-Lemli-
Opitz syndrome, a congenital developmental defect charac-
terized by defective cholesterol biosynthesis (Sharma et al. 
2021).

The role of spatiotemporal regulation in GPCR signal-
ing is increasingly recognized in the development of novel 
drugs targeting these receptors (Nezhady et al. 2020; Reta-
mal et al. 2019; Thomsen et al. 2018). A comprehensive 
understanding of lipid-mediated effects on GPCR traf-
ficking is therefore essential to tune drug responses based 
on the membrane environment at the site of drug action 

Acute cholesterol depletion Chronic cholesterol depletion

Methyl-β-
cyclodextrin Statin

Clathrin-mediated
endocytosis

Endosomal
recycling

Clathrin-mediated
endocytosis

Lysosomal
degradation

Caveolin-mediated
endocytosis

Lysosomal
degradation

Inhibition of endocytosis

High LowCholesterol

Serotonin1A receptor

Clathrin Caveolin

Phospholipid Serotonin

Fig. 3  Cholesterol-induced switch in the endocytosis and intracellular 
trafficking of the neurotransmitter  serotonin1A receptor. A schematic 
representing the effects of acute and chronic cholesterol depletion on 
the endocytosis and intracellular trafficking of the  serotonin1A recep-
tor. The  serotonin1A receptor undergoes agonist (serotonin)-induced 
internalization via clathrin-mediated endocytosis, and subsequently 
recycles back to the plasma membrane as its preferred mode of 
intracellular trafficking. The role of cholesterol in this process was 
probed using acute (treatment with the soluble sterol-carrier methyl-
β-cyclodextrin, MβCD) and chronic (inhibition of cellular cholesterol 
biosynthesis using statin) approaches of cholesterol depletion. Mild 
(acute) cholesterol depletion using a lower concentration of MβCD 

resulted in re-routing of receptors internalized via clathrin-mediated 
endocytosis toward lysosomal degradation. In addition to an altered 
intracellular trafficking itinerary, similar extent of cholesterol deple-
tion using statin induced an additional switch in the mechanism of 
internalization from clathrin- to caveolin-mediated endocytosis. 
Depletion of higher amounts of cholesterol using MβCD led to com-
plete inhibition in the endocytosis of the  serotonin1A receptor. These 
observations highlight the nuanced role of cholesterol in endocytosis 
and intracellular trafficking of the  serotonin1A receptor and the impor-
tance of taking into consideration the approach used to explore such 
phenomena in interpreting the results. The nuclei are shown in blue
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(Payandeh and Volgraf 2021; Wang et al. 2021). The mod-
ulatory effects of cholesterol on the endocytosis of the 
 serotonin1A receptor (discussed above) are a relevant case 
in point. Endocytosis of the  serotonin1A receptor has been 
implicated in the action of a popular class of anti-depres-
sant drugs called selective serotonin reuptake inhibitors 
(SSRIs). Cohort studies have suggested that SSRIs exhibit 
enhanced anti-depressant activity when administered to 
patients as a combination with cholesterol-lowering statin 
therapy relative to those on SSRI treatment alone (Gha-
nizadeh and Hedayati 2013; Köhler et al. 2016). These 
observations provide a potential mechanistic basis for our 
data showing altered endocytic and intracellular trafficking 
profiles of the  serotonin1A receptor upon statin treatment 
(Kumar and Chattopadhyay 2020). In another example, 
the endocytosis of a pH-sensitive peptide-drug conjugate 
via formyl peptide receptor 1 was insensitive to treatment 
with pharmacological inhibitors of clathrin- or caveolin-
mediated endocytosis, yet exhibited cholesterol depend-
ence pointing toward a crucial role for cholesterol in the 
drug delivery via cholesterol-sensitive internalization of 
the receptor (Wang et al. 2019).

Concluding thoughts and future excitements

Our evolving understanding of intracellular landscapes of 
GPCR signaling has opened up exciting avenues on the role 
of the membrane lipid milieu in enforcing spatiotemporal 
control over signaling through modulatory effects on intra-
cellular trafficking and signaling. Differential enrichment of 
lipids such as cholesterol in various membrane-bound intra-
cellular organelles and endosomal compartments could offer 
unique microenvironments with distinct effector partners for 
differential signaling outcomes. We envision that a system-
atic understanding of lipid dynamics in the spatiotemporal 
regulation of GPCR signaling would enable the development 
of therapeutic interventions fine-tuned to precisely target 
receptors in specific microenvironments.
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